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T
he van der Waals (VDW) interaction
plays very important role in nano-
electromechanical systems and

nanoelectronic devices.1,2 Carbon nano-

tubes (CNTs) are promising materials for

creating nanotweezers,3 nanoswitches,4

bearings,5 nanotube random access

memory,6,7 and gigahertz nano-oscillators,8

etc. The VDW forces are very critical for un-

derstanding the growth mechanism of

fullerenes and nanotubes and formation

process of ropes and bundles. Potentials

for graphite layers,9 two fullerenes,10

fullerene and surface,11 nanotube and sur-

face,12 and fullerenes inside and outside of

nanotubes13 are well studied. There are a

number of publications devoted to the in-

teraction between the inner and the outer

parallel tubes such as single-wall

(SWNTs),13�17 double-wall (DWNTs),17�19

and multiwall nanotubes (MWNTs).20,21

The present work is dedicated to the in-

terplay between two CNTs crossed at an ar-

bitrary angle. Frequently studies of CNT sys-

tems have assumed that the VDW potential

energy can be approximated by a sum of

two-body interactions between pairs of car-

bon atoms.

The interaction between a pair of neu-

tral atoms or molecules involves both short-

range and long-range interactions. A repul-

sive force at short ranges is the result of the

electron exchange (due to Pauli exclusion

principle). An attractive force at long ranges

or the van der Waals force is electromag-

netic in origin. As was first shown by Lon-

don (1930),22 it arises from the second-order

perturbation theory applied to the electro-

static dipole�dipole interaction.

Many body effects are very important

for the interaction between clusters consist-

ing of many atoms. The problem of the

many-body character of the VDW potential
is discussed for example in refs 23 and 24.
The many-body corrections of the VDW po-
tential have been derived for CNT bundles
and phases of various gases.25 Mainly the
three-body energy based on the
Axilrod�Teller�Muto expression26,27 was
used in references above.

A more accurate approximation is given
by the Lifshitz or Casimir formulation. If the
separation between two atoms is suffi-
ciently large then the retardation of the
electromagnetic fluctuating interaction
contributes significantly. The interaction of
atoms taking retardation into account was
considered by Casimir (1948)28,29 and Lif-
shitz (1956).30,31

Casimir’s theory describes the interac-
tion between two atoms or an atom and a
flat surface of a macrobody. Usually it is re-
ferred to as the Casimir�Polder force.29 The
general theory of the van der Waals forces
based on the concept of a frequency-
dependent dielectric permittivity was de-
veloped by Dzyaloshinskii, Lifshitz, and Pi-
taevskii.31

The Casimir or Lifshitz theory was suc-
cessfully applied for calculation of VDW en-
ergy between CNT bundles and microparti-
cles.17 The application of the Casimir or
Lifshitz theory to the CNTs causes serious
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ABSTRACT The analytical expressions for the van der Waals potential energy and force between two crossed

carbon nanotubes are presented. The Lennard-Jones potential between pairs of carbon atoms and the smeared-

out approximation suggested by L. A. Girifalco (J. Phys. Chem. 1992, 96, 858) were used. The exact formula is

expressed in terms of rational and elliptical functions. The potential and force for carbon nanotubes were

calculated. The uniform potential curves for single- and multiwall nanotubes were plotted. The equilibrium

distance, maximal attractive force, and potential energy have been evaluated.

KEYWORDS: carbon nanotubes · van der Waals interaction · Lennard-Jones
potential · smeared-out approximation · equilibrium distance

A
RTIC

LE

www.acsnano.org VOL. 4 ▪ NO. 10 ▪ 5937–5945 ▪ 2010 5937



problems because their boundary surface is not flat
and SWNTs are not characterized by the macroscopic
concept of a frequency-dependent dielectric permittiv-
ity.32

There are many different approaches based on the
density functional theory (DFT) that allow the study of
the cohesive and adsorption properties of SWNTs and
CNT bundles arising from the VDW interactions.33 The
time-dependent (TD) DFT provides a better description
than the usual DFT for the attractive part of the VDW
potential. However DFT or TD-DFT is known to be reli-
able in describing short-range electron correlation ef-
fects; their accuracy decreases rapidly for distances
greater than about 15% beyond the equilibrium dis-
tance. Several newly developed approaches which par-
tially overcome this defect are based on adding certain
damped potentials (DFT-D method).34�36 Problems re-
lated with the application of DFT calculations to CNTs
are discussed for example in refs 16, 37, and 38.

The empirical approach based on the pairwise sum-
mation of interatomic Lennard-Jones (LJ) potentials
adapted for graphitic structures has also been widely
applied. To evaluate the potential between two crossed
SWNTs or MWNTs, in the present work we apply the
pairwise summation of adapted LJ potentials and the
method of the smeared-out approximation suggested
by L.A. Girifalco10,38 for fullerene molecules and for
CNTs. The model potentials for the VDW interaction
are based on empirical functions whose parameters are
obtained from empirical fits to properties of the rel-
evant CNT systems. Despite its simplicity this model
was very successful in the description of many compli-
cated technological problems such as the gigahertz os-
cillation of DWNTs,39 wave propagation,40 and stabil-
ity41 in the deformed nanotubes.

It was shown by Ruoff et al.42 that VDW forces be-
tween adjacent nanotubes can deform them, destroy-
ing cylindrical symmetry. Using molecular mechanics
Hertel et al.43 calculated radial deformations of carbon
nanotubes adsorbed on surface. The radial compres-
sions of adsorbed SWNTs with respect to the undis-
torted free tubes do not exceed 2% for a tube diam-
eter of 13.5 Å and smaller. When the number of inner
shells is greater than 8, the compressions are less than
1% for 54.3 Å MWNT. Experimental observations of a
bundle of two SWCNTs show that the deformation does
not exceed 4% for 21 Å and smaller SWNTs.44,45 There-
fore we can apply the continuum medium model for
SWNTs with small radius and MWNTs consisting of
many inner shells. The other reasons for using the Giri-
falco model in the present work are its simplicity and
the sufficient level of accuracy. The next advantage is
that the final potential can be written in analytical form.

The close conformity of the potential shape be-
tween DFT calculations and the pairwise integration
lends support for the validity of Girifalco method. Am-
ovilli and March46 found a good agreement between

VDW potentials for parallel CNTs predicted by DFT and
the Girifalco model. Pacheco and Ramalho33 used LDA
for distances near and less than the equilibrium separa-
tion and a multipole expansion for the longer range dis-
tances of C60�C60 interaction. The two potentials are
close to each other in the vicinity of minimum and be-
yond. Both potentials reproduce the experimental
behavior-of-state up to at least 5000 atm. Thus we con-
clude that the Girifalco model with constants depend-
ing on the structure of interacting objects may be accu-
rate enough for distances between objects in the
vicinity of equilibrium.

It is remarkable that empirical parameters have
been so successful in providing a unified, consistent de-
scription of the properties that depend on the weak in-
teractions between and among graphene sheets,
fullerene molecules, and nanotubes.38

MODEL
The LJ potential for two carbon atoms in

graphene�graphene structure is

where r is a distance, A � 15.2 eV · Å6 and B � 24100
eV · Å12 are the attractive and repulsive constants, re-
spectively.13 Following Girifalco10 we approximate the
potential between two crossed SWNTs by integration of
the LJ potential

The mean surface density of carbon atoms for a hexago-
nal structure is

where a1 � 1.42 Å is the observed value of the C�C
bond length for periodic graphite.18 If we know VDW in-
teraction between two SWNTs then according to the
Girifalco approach we may obtain the interaction be-
tween MWNTs by summation over all pairs of layers.20

RESULTS AND DISCUSSION
We have studied the VDW interaction between two

crossed CNTs by using the continuum LJ approxima-
tion. We have performed the analytical integrations for
the potential energy of interaction between two CNTs
crossed at an arbitrary angle. Schematic illustrations of
interaction between SWNT and chain of carbon atoms
and between two MWNTs are given in Figure 1.

It is clear from eqs 17, 26, 29, and 36 (see Methods
section) that the potential energy and VDW force is in-
versely proportional to the sine of angle � between two
tubes. For the right angle case, the energy and the at-
tractive force are minimal. If the angle is infinitesimal
then energy and force approaches infinity. We use the

�(r) ) -A

r6
+ B

r12
(1)

�tt ) ν2∫�(r) dΣ1 dΣ2 (2)

ν ) 4

3√3a1
2

≈ 0.393 atoms per Å2 (3)

A
RT

IC
LE

VOL. 4 ▪ NO. 10 ▪ ZHBANOV ET AL. www.acsnano.org5938



parameter d � r � t1 � t2 to characterize the distance

between tubes. From eq 17 we see that the equilibrium

distance d0 � d0(t1, t2) does not depend on angle � but

only on radii of tubes t1 and t2. Also the potential well �tt
0

is inversely proportional to sin �. Therefore, we assume

in all our following illustrations and tables for both

SWNTs and MWNTs that nanotubes are crossed at a

right angle.

The analytical integrations for the potential energy

of interaction between two identical SWNTs are plot-

ted in Figure 2. On the basis of the results illustrated in

Figure 2, it can be concluded that the real gap be-

tween surfaces of interacting SWNTs of different radii

in an equilibrium state is changed only slightly in the

range d0 � 2.92�2.93 Å. We have carried out many cal-

culations with different radii t1 and t2. The equilibrium

distance is practically independent of tube radius and

totally independent of angle �. Very weak dependence

of equilibrium gap from radii of parallel tubes has been

mentioned in refs 14, 20, and 28.

For comparison, in ref 10 the equilibrium gap be-

tween two fullerenes C60 is given as 2.95 Å, while the

equilibrium distance between two parallel nanotubes

is in the range 3.11�3.17 Å.14,20,38 We see that a certain

jump is observed at the transition from crossed to par-

allel configuration. This is due to the fact that in the cen-

tral parts of crossed tubes the nearest surfaces repel

each other while the far-separated surfaces attract each

other, but for the distant parts of crossed tubes all sur-

faces attract each other. In the parallel case we have
the VDW interaction similar to which happens in the
central parts of crossed tubes, but we do not have at-
tracting distant parts. Unfortunately we cannot com-
pare the well depth for crossed and parallel tubes be-
cause in the crossed case the well depth is measured in
eV, while for parallel tubes the units should be eV per
unit length.

In the case of MWNT interaction we assume that
each pair of layers interacts as SWNTs and use summa-
tion over all pairs. The potential energy for two MWNTs
of equivalent radii is plotted in Figure 3. In these calcu-
lations we assume that each MWNT consists exactly of
11 walls. The equilibrium distance between their sur-
faces is found to be d0 � 2.87 Å, which is smaller than
the equilibrium SWNT�SWNT gap.

From our calculations it follows that only several
outer shells of MWNTs play an essential role in the
VDW interaction. For example, if two equal MWNTs
with d � 200 Å contain 6, 11, 16, 21, or 26 layers, then
the minimum energy is �60.78, �62.77, �63.48,
�63.83, or �64.03 eV. The dependence of the mini-
mum potential energy from the number of inner layers
for pairs of equivalent MWNTs is presented in Table 1.

It was found that the VDW interaction between
C60�C60, C60�SWNT, C60�graphene,
graphene�graphene, parallel SWNT�SWNT, and paral-
lel MWNT�MWNT can be described by a universal

Figure 1. Schematic drawing of interaction between (a)
SWNT and line and (b) two MWNTs.

Figure 2. Potential energies for interaction between pairs of
identical SWNTs, � � �/2.

Figure 3. Potential energies for interaction between pairs of
MWNTs of equivalent size. MWNTs contain 11 layers, � �
�/2.

TABLE 1. Dependence of Potential Well |�tt
0 | (eV) from

Number of Layers (6, 11, 16, 21, 26) for MWNTs of
Equivalent Radii, � � �/2

radius (Å) 6 11 16 21 26

50 15.09 15.48 N/A N/A N/A
100 30.31 31.25 31.56 31.70 31.75
150 45.55 47.01 47.52 47.76 47.90
200 60.78 62.77 63.48 63.83 64.03
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curve.13,14,20 In our case universal curve means that a
plot of �̄tt � �tt/|�tt

0| against d̄ � d/d0 gives the same
curve for all tube�tube interactions, where �tt

0 is the
minimum energy and d0 is the equilibrium spacing for
the two crossed tubes. As pointed above, the equilib-
rium distances are approximately constants for SWNTs
and MWNTs with fixed number of shells.

We have calculated the minimum energy �tt
0 for

SWNTs of different radii (Table 2) as well as for MWNTs
(Table 3). The function �tt

0 (t1, t2) is symmetric, so we
look over different simple symmetric functions to fit it.
These results can be described very well as can be seen
in Figure 4 by the approximating formula

where C1
SWNT � �1.3232 eV Å3, C2

SWNT � �0.4012 eV Å4,
and C1

MWNT � �2.161 eV Å3, C2
MWNT � 1.036 eV Å4 are pa-

rameters for SWNTs and MWNTs with 11 shells, respec-
tively. It can be figured out from Tables 2 and 3 that the
approximating formula gives very good accuracy.

It is remarkable that plots for CNTs of different radii

crossed at an arbitrary angle fall on the same uniform

curve with accuracy within the line thickness. Using di-

mensionless potential �̄tt we can fit the potential of in-

teraction between pairs of different SWNTs to one uni-

form curve and between pairs of different MWNTs with

11 shells to another one (in Figure 5). Actually if the

number of shells is bigger than 11 the uniform curves

are practically the same. For comparison Figure 5 also

shows a universal potential suggested by Girifalco L.A.

et al.13

We try to approximate the uniform curve �̄tt(d̄) by

�̄s(d̄) for SWNTs and by �̄m(d̄) for MWNTs with 11 shells

in the form

where i � s for SWNTs and i � m for MWNTs with 11

shells. When d̄ is changed in the region from 0.01 to 0.6,

the main influence comes from the first term, and us-

ing logarithm scale we may find that ni � 9, bs � 0.49,

bm � 0.3. From the conditions

TABLE 2. Calculated Depth |�tt
0 | (eV) for SWNTs (Upper-

Right Side) and Approximation (Lower-Left Side), � � �/2

radius (Å) 6.79 10.18 13.57 16.96

6.79 1.426\1.434 1.728 1.979 2.202
10.18 1.723 2.080\2.081 2.384 2.653
13.57 1.975 2.385 2.734\2.731 3.039
16.96 2.199 2.655 3.043 3.388\3.382

TABLE 3. Calculated Depth |�tt
0 | (eV) for MWNTs Consisting

of 11 Shells (Upper-Right Side) and Approximation
(Lower-Left Side), � � �/2

radius (Å) 50 100 150 200

50 15.45\15.48 21.99 26.97 31.17
100 21.95 31.20\31.25 38.33 44.29
150 26.93 38.27 46.95\47.01 54.32
200 31.12 44.23 54.25 62.70\62.77

Figure 4. Calculated depth |�tt
0|, eV eq 17 and approximation eq 4 (a) for SWNTs and (b) for MWNTs consisting of 11 shells,

� � �/2.

Figure 5. Uniform potential for SWNTs and MWNTs with 11
shells of arbitrary sizes. Dotted line is the universal curve
suggested by L.A. Girifalco et al.; angle � is arbitrary.

�tt
0 ≈ �CNT

0 (t1, t2, γ) ) ν2

sin γ(C1
CNT√t1t2 + C2

CNT
t1 + t2

√t1t2
)
(4)

�j i(d̄) )
bi

d̄ni
-

ci

d̄mi
, ni > mi (5)
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we find that

This approximation works very well for d̄ in the region

from 0.01 to 5.

Now using eqs 4 and 7 we can write an approxima-

tion for the VDW potential according to the method of

uniform curve. For SWNTs we have

and for MWNTs with 11 shells

Figures 6 and 7 show the forces for two CNTs of

equivalent radii. As we see in these figures the behav-

ior for both SWNTs and MWNTs with 11 shells is quali-

tatively similar. The distance where the attractive force

reaches its maximum is in the range 3.40�3.41 for

SWNTs and it is practically constant, 3.36 Å, for MWNTs.

CONCLUSIONS
We used Lennard-Jones potential between two car-

bon atoms and apply the smeared-out approximation

suggested by L.A. Girifalco to calculate the interaction

between two crossed CNTs of different diameters. The

exact formulas for potential energy and van der Waals

forces are expressed in terms of rational and elliptical

functions. These formulas become much simpler in the

case of interaction between equivalent tubes. We evalu-

ated the equilibrium distance, maximal attractive force
and potential energy for SWNTs and MWNTs.

It is remarkable that the optimal distance d0 does
not depend on the angle � between two straight tubes
and is almost constant for CNTs of different radii. The
equilibrium distance for crossed SWNTs is 2.93 Å. For
comparison14 the equilibrium gap between two paral-
lel SWNTs is 3.15 Å. The optimal distance for MWNTs is
smaller than that for SWNTs. The presence of additional
layers makes the optimal distance smaller.

We also found that within very good accuracy the
potential well �0 can be well approximated by a linear
combination of (t1t2)1/2 and (t1 � t2)/(t1t2)1/2, where t1 and
t2 are the radii of CNTs. Thus the value of �0 can be
evaluated without any integration.

We found that if the energy is expressed in units of
the well depth �0 and the distance is measured in the
equilibrium VDW gap d0, as suggested by Girifalco et al.,
then all the potentials between two arbitrary SWNTs
fall on the same uniform curve, and all the potentials
between two arbitrary MWNTs with fixed number of
layers fall on another uniform curve. On the basis of the
uniform curves and expressions for �0 the VDW poten-
tial function for any two CNTs can be easily reproduced.

The uniform curve for SWNT interaction does not de-
pend on VDW constants A and B taken in reasonable
physical diapason. For a uniform curve of MWNT inter-
actions we observed very small dependence on con-
stants A and B. Using the method of uniform curve we
also obtained a simple approximate formula for the
VDW potential �(d, t1, t2, �).

METHODS
Ancillary Integrals. To calculate the VDW interaction between

two nanotubes we have to use a few useful integrals. For the in-
tegral of LJ potential between two straight lines we obtain

Figure 6. van der Waals forces between two identical SWNTs,
� � �/2.

Figure 7. van der Waals force between pairs of MWNTs of
equivalent size. MWNTs contain 11 layers, � � �/2.

�j i(1) ) -1,
∂�j i

∂d̄
(1) ) 0 (6)

�j i(d̄) ) bi( 1

d̄9
-

bi + 1

bi

1

d̄9bi/(bi+1)) (7)

�(d, t1, t2, γ) ≈ �SWNT
0 (t1, t2, γ) �j s(d/d0), d0 ) 2.925 Å

(8)

�(d, t1, t2, γ) ≈ �MWNT
0 (t1, t2, γ) �jm(d/d0), d0 ) 2.87 Å

(9)

Ill(r) ) ∫�(r) dl1 dl2, (10)
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where � is the angle and r is the distance between the two lines,
and index ll means “line�line”. For the next integral between a
line and a tube we have

where t is tube radius, r is distance between the line and the
axis of the tube, and index lt means “line�tube”. Figure 1a illus-
trates the schematic image of SWNT and line. Introducing a new
variable u � tan(�/2) and using the method of partial fractions
we get

where

Tube�Tube Interaction Potential. Figure 1b schematically illus-
trates the interaction between two MWNTs crossed at right
angle for convenience but hereinafter we consider tubes crossed
at arbitrary angle �. Parameter a2 � 3.44 Å is the average dis-
tance between two layers in MWNTs;18 d is the gap between
tubes.

In a particular case these tubes may consist only of one layer.
We note t1 as a radius of the first SWNT and t2 as a radius of the
second one (r � d � t1 � t2). The interaction potential between
two SWNTs is

where y(x) � (t2
2 �(x � r)2)1/2, index tt means “tube�tube”.

Introducing dimensionless parameters

and using eq 13 we have

After some transformations we write

where multipliers for attractive and repulsive terms are

The obtained eq 18 and eq 19 represent the elliptic inte-
grals. In modern mathematics elliptic integral is defined as inte-
gral �R(x, y) dx, where R(x, y) is rational function of x and y, and y2

is a cubic or quartic polynomial in x. With the appropriate reduc-
tion formula every elliptical integral can be expressed in terms
of elementary functions and canonical elliptic integrals of first,
second, and third kind. The method of integration is quite com-
plicated but well-known.47�50 We would like to present only the
final answer. For the attractive part we have the dimensionless
parameter

where

Analogically for the repulsive part we write the dimensionless
parameter

Details of the definition of dimensionless coefficients gAK(b1, b2),
gAE(b1, b2), gBK(b1, b2), and gBE(b1, b2), are given in the Appendix.

As we can see, the final result eq 17 is quite large but it works
much better than the usual numerical integration, because this
analytical formula provides high accuracy and high speed of
calculations.

Tube�Tube Force. The resulting force caused by VDW interac-
tion is

Using the expressions48

and

it is possible to obtain the analytical formula for the VDW force.
After the usual differentiation over r we have

where

The definition of dimensionless coefficients fAK(b1, b2), fAE(b1, b2),
fBK(b1, b2), and fBE(b1, b2) are given in the Appendix.

Potential and Force between Equivalent Tubes. The potential and
force can be more simply expressed in the case when the radii
of interacted tubes are equal, t1 � t2 � t; therefore, b1 � b2 � b
� r/t. Then we have, for the potential,

where

and

Ill(r) ) π
sin γ(- A

2r4
+ B

5r10) (11)

Ilt(r, t) ) t∫-π

π
Ill(r - t sin �) d�, r > t (12)

Ilt(r, t) ) 1
sin γ(-A·x3GA(x)

2r3
+

B·x9GB(x)

5r9 ) )

1
sin γ(-A·GA(x)

2t3
+

B·GB(x)

5t9 ) (13)

x ≡ r
t
, GA(x) ) π2x(2x2 + 3)

(x2 - 1)7/2

GB(x) ) π2x(128x8 + 2304x6 + 6048x4 + 3360x2 + 315)

64(x2 - 1)19/2

�tt(r, t1, t2) ) 2ν2∫
r-t2

r+t2

Ilt(x, t1)√1 + y'2(x) dx (14)

x ) x
t1

, b1 ) r
t1

, b2 ) r
t2

, k )
t2

t1

(15)

�tt(r, t1, t2) ) ν2t1∫
b1-k

b1+k 2kIlt(x, t1)

√k2 - (x - b1)2
dx (16)

�tt(r, t1, t2) ) ν2

sin γ(-A·gA

r2
+

B·gB

r8 ) (17)

gA(b1, b2) )
b1

2

2 ∫
b1-k

b1+k 2kGA(x)

√k2 - (x - b1)2
dx (18)

gB(b1, b2) )
b1

8

5 ∫
b1-k

b1+k 2kGB(x)

√k2 - (x - b1)2
dx (19)

gA ) gAK(b1, b2)K(h) + gAE(b1, b2)E(h) (20)

h )
2√b1b2

√(b1b2 + b1 - b2)(b1b2 + b2 - b1)
(21)

gB ) gBK(b1, b2)K(h) + gBE(b1, b2)E(h) (22)

F(r) ) -
d�tt(r)

dr
(23)

dK(x)
dx

) E(x)

(1 - x2)x
- K(x)

x
(24)

dE(x)
dx

) 1
x

(E(x) - K(x)) (25)

F(r, t1, t2) ) ν2

sin γ(-AfA

r3
+

BfB

r9 ) (26)

fA ) fAK(b1, b2)K(h) + fAE(b1, b2)E(h) (27)

fB ) fBK(b1, b2)K(h) + fBE(b1, b2)E(h) (28)

�tt*(r, t) ) ν2

sin γ(-AgA*

r2
+

BgB*

r8 ) (29)

gA* ) gAK* K(2/b) + gAE* E(2/b) (30)

gB* ) gBK* K(2/b) + gBE* E(2/b) (31)
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Similarly, in the case of t1 � t2 for the force we have
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APPENDIX
The dimensionless coefficients for attractive part of

tube�tube interaction potential are as the following

The matrices of integer coefficients {pAK} and {pAE} are

Analogically we write the dimensionless coefficients for repul-
sive part

Matrices of integer coefficients {pBK} and {pBE} are placed in Tables
4 and 5, respectively.

The dimensionless coefficients for attractive and repulsive
part of force are expressed as

where

Matrices {qBK} and {qBE} are given in Tables 6 and 7, respectively.

gAK* ) -2π2(5b2 - 4)

3(b2 - 4)2
(32)

gAE* ) 2π2(32 - 20b2 + 11b4)

3(b2 - 4)3
(33)

gBK* ) -π2(4609b14 + 56038b12 + 321132b10 - 473632b8 +

1885952b6 - 3867648b4 + 4510720b2 -
2293760)/(1575(b2 - 4)8) (34)

gBE* ) π2(7129b16 + 97220b14 + 763489b12 - 1533424b10 +

7790944b8 - 21756160b6 + 38781184b4 - 40099840b2 +
18350080)/(1575(b2 - 4)9) (35)

F∗(t, r) ) ν2

sin γ(-AfA*

r3
+

BfB*

r9 ) (36)

fA* ) 4π2

3(b2 - 4)4(fAK* K(2
b) + fAE* E(2

b)) (37)

fB* ) π2

315(b2 - 4)10(fBK* K(2
b) + fBE* E(2

b)) (38)

fAK* ) 13b6 - 62b4 + 64b2 - 96 (39)

fAE* ) -25b6 + 36b4 - 176b2 + 192 (40)

fBK* ) 9722b18 + 129650b16 + 537641b14 - 5804036b12 +

11418976b10 - 50923136b8 + 118211840b6 -
180548608b4 + 162971648b2 - 66060288 (41)

fBE* ) -14762b18 - 285174b16 - 2659951b14 +

3029636b12 - 27622752b10 + 95326336b8 - 226611968b6 +
351556608b4 - 321814528b2 + 132120576 (42)

gAK(b1, b2) ) -[2π2b1
4b2

4 ∑
i,j)1...3

{pAK}ijb1
2(i-1)b2

2(j-1)]/

[3(b1b2 + b1 + b2)2(b1b2 - b1 - b2)2(b1b2 + b1 - b2)5/2 ×

(b1b2 + b2 - b1)5/2] (43)

gAE(b1, b2) ) -[2π2b1
4b2

4 ∑
i,j)1...4

{pAE}ijb1
2(i-1)b2

2(j-1)]/

[3(b1b2 + b1 + b2)3(b1b2 - b1 - b2)3(b1b2 + b1 - b2)5/2 ×

(b1b2 + b2 - b1)5/2] (44)

{pAK} ) [ 0 0 -3
0 6 -2
-3 -2 5 ]

{pAE} ) [ 0 0 0 12
0 0 -12 -13
0 -12 58 -10

12 -13 -10 11
]

gBK(b1, b2) )

- [π2b1
10b2

10 ∑
i,j)1...12

{pBK}ijb1
2(i-1)b2

2(j-1)]/

[6300(b1b2 + b1 + b2)8(b1b2 - b1 - b2)8(b1b2 + b2 - b1)17/2

(b1b2 + b2 - b1)17/2] (45)

gBE(b1, b2) ) [π2b1
10b2

10 ∑
i,j)1..13

{pBE}ijb1
2(i-1)b2

2(j-1)]/

[25200(b1b2 + b1 + b2)9(b1b2 - b1 - b2)9(b1b2 + b1 - b2)17/2

(b1b2 + b2 - b1)17/2] (46)

fAK(b1, b2) ) [2π2b1
4b2

4 ∑
i,j)1...5

{qAK}ijb1
2(i-1)b2

2(j-1)]/

[3(b1b2 + b1 + b2)2(b1b2 - b1 - b2)3(b1b2 + b1 - b2)7/2 ×

(b1b2 + b2 - b1)7/2] (47)

fAE(b1, b2) ) -[4π2b1
4b2

4 ∑
i,j)1..6

{qAE}ijb1
2(i-1)b2

2(j-1)]/

[3(b1b2 + b1 + b2)3(b1b2 - b1 - b2)3(b1b2 + b1 - b2)7/2 ×

(b1b2 + b2 - b1)7/2(b1
2b2

2 - 2b1b2 - b1
2 - b2

2)] (48)

fBK(b1, b2) ) [π2b1
10b2

10 ∑
i,j)1...14

{qBK}ijb1
2(i-1)b2

2(j-1)]/

[5040(b1b2 + b1 + b2)9(b1b2 - b1 - b2)9 ×

(b1b2 + b1 - b2)19/2(b1b2 + b2 - b1)19/2] (49)

fBE(b1, b2) )

- [π2b1
10b2

10 ∑
i,j)1...15

{qBE}ijb1
2(i-1)b2

2(j-1)]/

[5040(b1b2 + b1 + b2)9(b1b2 - b1 - b2)9(b1b2 + b1 - b2)19/2 ×

(b1b2 + b2 - b1)19/2(b1
2b2

2 - 2b1b2 - b1
2 - b2

2)] (50)

{qAK} ) [0 0 0 0 3
0 0 0 -12 36
0 0 18 -36 -55
0 -12 -36 158 -10
3 36 -55 -10 26

]
{qAE} ) [ 0 0 0 0 0 -6

0 0 0 0 18 -39
0 0 0 -12 -132 128
0 0 -12 342 -224 -90
0 18 -132 -224 356 -18
-6 -39 128 -90 -18 25

]
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